Bottom tangles and universal invariants

نویسندگان

  • KAZUO HABIRO
  • Kazuo Habiro
چکیده

A bottom tangle is a tangle in a cube consisting only of arc components, each of which has the two endpoints on the bottom line of the cube, placed next to each other. We introduce a subcategory B of the category of framed, oriented tangles, which acts on the set of bottom tangles. We give a finite set of generators of B , which provides an especially convenient way to generate all the bottom tangles, and hence all the framed, oriented links, via closure. We also define a kind of “braided Hopf algebra action” on the set of bottom tangles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the universal sl2 invariant of boundary bottom tangles

The universal sl2 invariant of bottom tangles has a universality property for the colored Jones polynomial of links. Habiro conjectured that the universal sl2 invariant of boundary bottom tangles takes values in certain subalgebras of the completed tensor powers of the quantized enveloping algebra Uh(sl2) of the Lie algebra sl2. In the present paper, we prove an improved version of Habiro’s con...

متن کامل

On 3-manifold Invariants Arising from Finite-dimensional Hopf Algebras

We reformulate Kauffman’s method of defining invariants of 3-manifolds intrinsically in terms of right integrals on certain finite dimensional Hopf algebras and define a type of universal invariants of framed tangles and invariants of 3-manifolds.

متن کامل

Non-associative Tangles

Following Drinfel’d, Kontsevich and Piunikhin, we study the iterated integral expression for the holonomy of the formal Knizhnik-Zamolodchikov connection, finding that by introducing non-associative tangles, tangles whose strands are grouped in some particular way, the computation of these integrals can be reduced to the computation of just two holonomies R and Φ. A category NAT of non-associat...

متن کامل

On the universal sl2 invariant of ribbon bottom tangles

A bottom tangle is a tangle in a cube consisting of arc components whose boundary points are on a line in the bottom square of the cube. A ribbon bottom tangle is a bottom tangle whose closure is a ribbon link. For every n-component ribbon bottom tangle T , we prove that the universal invariant JT of T associated to the quantized enveloping algebra Uh(sl2) of the Lie algebra sl2 is contained in...

متن کامل

RIMS - 1671 On the universal sl 2 invariant of ribbon bottom tangles

A bottom tangle is a tangle in a cube consisting of arc components whose boundary points are on a line in the bottom square of the cube. A ribbon bottom tangle is a bottom tangle whose closure is a ribbon link. For every n-component ribbon bottom tangle T , we prove that the universal invariant JT of T associated to the quantized enveloping algebra Uh(sl2) of the Lie algebra sl2 is contained in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005